ladder paradox - or barn-pole paradox
شنبه, ۳ دی ۱۳۹۰، ۱۲:۴۰ ب.ظ
The ladder paradox (or barn-pole paradox) is a thought experiment in special relativity. It involves a ladder travelling horizontally and undergoing a length contraction,
the result of which being that it can fit into a much smaller garage.
On the other hand, from the point of view of an observer moving with the
ladder, it is the garage that is moving and the garage will be
contracted to an even smaller size, therefore being unable to contain
the ladder at all. This apparent paradox results from the assumption of
absolute simultaneity. In relativity, simultaneity is relative to each observer and thus the ladder can fit into the garage in both instances.
Paradox
Figure 1: An overview of the garage and the ladder at rest
The problem starts with a ladder and an accompanying garage that is
too small to contain the ladder. Through the relativistic effect of length contraction, the ladder can be made to fit into the garage by running it into the garage at a high enough speed.
Figure 2: In the garage frame, the ladder undergoes length contraction and will therefore fit into the garage.
However, both the ladder and garage occupy their own inertial reference frames,
and thus both frames are equally valid frames to view the problem. From
the reference frame of the garage, it is the ladder that moves with a relative velocity and so it is the ladder that undergoes length contraction.
Conversely, through symmetry,
from the reference frame of the ladder it is the garage that is moving
with a relative velocity and so it is the garage that undergoes a length
contraction. From this perspective, the garage is made even smaller and
it is impossible to fit the ladder into the garage.
Figure 3: In the ladder frame, the garage undergoes length contraction and seems too small to contain the ladder.
[edit] Relative simultaneity
Figure 4: Scenario in the garage frame: a length contracted ladder entering and exiting the garage
Figure 5: Scenario in the ladder frame: a length contracted garage passing over the ladder
The solution to the apparent paradox lies in the fact that what one
observer (e.g. the garage) considers as simultaneous does not correspond
to what the other observer (e.g. the ladder) considers as simultaneous (relative simultaneity).
A clear way of seeing this is to consider a garage with two doors that
swing shut to contain the ladder and then open again to let the ladder
out the other side.
From the perspective of the garage, the length-contracted ladder is
short enough to fit entirely inside. The instant the ladder is fully
inside the garage, the front and back doors close simultaneously. Then,
since the ladder is still moving at considerable speed, the front and
back doors simultaneously open again to allow the ladder to exit.
From the perspective of the ladder, the back door (right) closes and
opens, then after the garage passes over the ladder, the front door
(left) closes and opens.
The situation is illustrated in the Minkowski diagram
below. The diagram is in the rest frame of the garage. The vertical
light-blue-shaded band shows the garage in space-time, the light-red
band shows the ladder in space-time. The x and t axes are the garage
space and time axes, respectively, and x′ and t′ are the ladder space
and time axes, respectively. The ladder is moving at a velocity of in the positive x direction, therefore . (From the ladder's point of view, its speed in the x′ direction is the same.)
Since light travels at very close to one foot per nanosecond, let’s work in these units, so that .
The garage is a small one, G=10 feet long, while in the ladder frame,
the ladder is L=12 feet long. In the garage frame, the front of the
ladder will hit the back of the garage at time (if tD = tO = 0 is chosen as the reference point). This is shown as event A
on the diagram. All lines parallel to the garage x axis will be
simultaneous according to the garage observer, so the dark blue line AB will be what the garage observer sees as the ladder at the time of event A. The ladder is contained inside the garage. However, from the point of view of the observer on the ladder, the dark red line AC is what the ladder observer sees as the ladder. The back of the ladder is outside the garage.
Figure 6: A Minkowski diagram of ladder paradox. The garage is shown in
light blue, the ladder in light red. The diagram is in the rest frame of
the garage, with x and t being the garage space and time axes,
respectively. The ladder frame is for a person sitting on the front of
the ladder, with x′ and t′ being the ladder space and time axes
respectively. The x and x′ axes are each 5 feet (1.5 m) long in their
respective frames, and the t and t′ axes are each 5 ns in duration.
[edit] Resolution
Figure 7: A ladder contracting under acceleration to fit into a length contracted garage
In the context of the paradox, when the ladder enters the garage and
is contained within it, it must either continue out the back or come to a
complete stop. When the ladder comes to a complete stop, it accelerates
into the reference frame of the garage. From the reference frame of the
garage, all parts of the ladder come to a complete stop simultaneously,
and thus all parts must accelerate simultaneously.
From the reference frame of the ladder, it is the garage that is
moving, and so in order to be stopped with respect to the garage, the
ladder must accelerate into the reference frame of the garage. All parts
of the ladder cannot accelerate simultaneously because of relative
simultaneity. What happens is that each part of the ladder accelerates
sequentially, front to back, until finally the back end of the ladder
accelerates when it is within the garage, the result of which is that,
from the reference frame of the ladder, the front parts undergo length
contraction sequentially until the entire ladder fits into the garage.
Figure 8: A Minkowski diagram of the case
where the ladder is stopped all along its length, simultaneously in the
garage frame. When this occurs, the garage frame sees the ladder as AB,
but the ladder frame sees the ladder as AC. When the back of the ladder
enters the garage at point D, it has not yet felt the effects of the
acceleration of its front end. At this time, according to someone at
rest with respect to the back of the ladder, the front of the ladder
will be at point E and will see the ladder as DE. It is seen that this
length in the ladder frame is not the same as CA, the rest length of the
ladder before the deceleration.
[edit] Ladder paradox and transmission of force
Figure 1: A Minkowski diagram of the case
where the ladder is stopped by impact with the back wall of the garage.
The impact is event A. At impact, the garage frame sees the ladder as
AB, but the ladder frame sees the ladder as AC. The ladder does not move
out of the garage, so its front end now goes directly upward, through
point E. The back of the ladder will not change its trajectory in
space-time until it feels the effects of the impact. The effect of the
impact can propagate outward from A no faster than the speed of light,
so the back of the ladder will never feel the effects of the impact
until point F or later, at which time the ladder is well within the
garage in both frames. Note that when the diagram is drawn in the frame
of the ladder, the speed of light is the same, but the ladder is longer,
so it takes more time for the force to reach the back end; this gives
enough time for the back of the ladder to move inside the garage.
What if the back door (the door the ladder exits out of) is closed
permanently and does not open? Suppose that the door is so solid that
the ladder will not penetrate it when it collides, so it must stop.
Then, as in the scenario described above, in the frame of reference of
the garage, there is a moment when the ladder is completely within the
garage (i.e. the back of the ladder is inside the front door), before it
collides with the back door and stops. However, from the frame of
reference of the ladder, the ladder is too big to fit in the garage, so
by the time it collides with the back door and stops, the back of the
ladder still has not reached the front door. This seems to be a paradox.
The question is, does the back of the ladder cross the front door or
not?
The difficulty arises mostly from the assumption that the ladder is
rigid (i.e. maintains the same shape). Ladders seem pretty rigid in
everyday life. But being rigid requires that it can transfer force at
infinite speed (i.e. when you push one end the other end must react
immediately, otherwise the ladder will deform). This contradicts special
relativity, which states that information can only travel at most the
speed of light (which is pretty fast for us to notice in real life, but
is significant in the ladder scenario). So objects cannot be perfectly
rigid under special relativity.
In this case, by the time the front of the ladder collides with the
back door, the back of the ladder does not know it yet, so it keeps
moving forwards (and the ladder kind of "compresses"). In both the frame
of the garage and the inertial frame of the ladder, the back end keeps
moving at the time of the collision, until at least the point where the
back of the ladder comes into the light cone of the collision (i.e. a
point where force moving backwards at the speed of light from the point
of the collision will reach it). At this point the ladder is actually
shorter than the original contracted length, so the back end is well
inside the garage. Calculations in both frames of reference will show
this to be the case.
What happens after the force reaches the back of the ladder (the
"green" zone in the diagram) is not specified. Depending on the physics,
the ladder could break into a million pieces; or, if it were
sufficiently elastic, it could re-expand to its original length and push
the back end out of the garage.
[edit] Man falling into grate variation
A man (represented by a segmented rod) falling into a grate
This paradox was originally proposed and solved by Wolfgang Rindler
("Length Contraction Paradox": Am. J. Phys., 29(6) June 1961) and
involved a fast walking man, represented by a rod, falling into a grate.
It is assumed that the rod is entirely over the grate in the grate
frame of reference before the downward acceleration begins
simultaneously and equally applied to each point in the rod.
From the perspective of the grate, the rod undergoes a length
contraction and fits into the grate. However, from the perspective of
the rod, it is the grate undergoing a length contraction, through which it seems the rod is then too long to fall.
In fact, the downward acceleration of the rod, which is simultaneous
in the grate's frame of reference, is not simultaneous in the rod's
frame of reference. In the rod's frame of reference, the front of the
rod is first accelerated downward, and as time goes by, more and more of
the rod is subjected to the downward acceleration, until finally the
back of the rod is accelerated downward. This results in a bending of
the rod in the rod's frame of reference. It should be stressed that,
since this bending occurs in the rod's rest frame, it is a true physical
distortion of the rod which will cause stresses to occur in the rod.
[edit] Bar and ring paradox
The diagram on the left illustrates a bar and a ring in the rest frame
of the ring at the instant that their centers coincide. The bar is
Lorentz-contracted and moving upward and to the right while the ring is
stationary and uncontracted. The diagram on the right illustrates the
situation at the same instant, but in the rest frame of the bar. The
ring is now Lorentz-contracted and rotated with respect to the bar, and
the bar is uncontracted. Again, the ring passes over the bar without
touching it.
The above paradox is complicated: It involves non-inertial frames of
reference since at one moment the man is walking horizontally, and a
moment later he is falling downward. It involves a physical deformation
of the man (or segmented rod), since the rod is bent in one frame of
reference and straight in another. These aspects of the problem
introduce complications involving the stiffness of the bar which tends
to obscure the real nature of the "paradox". A very similar but simpler
problem involving only inertial frames is the "bar and ring" paradox
(Ferraro 2007) in which a bar which is slightly larger in length than
the diameter of a ring is moving upward and to the right with its long
axis horizontal, while the ring is stationary and the plane of the ring
is also horizontal. If the motion of the bar is such that the center of
the bar coincides with the center of the ring at some point in time,
then the bar will be Lorentz-contracted due to the forward component of
its motion, and it will pass through the ring. The paradox occurs when
the problem is considered in the rest frame of the bar. The ring is now
moving downward and to the left, and will be Lorentz-contracted along
its horizontal length, while the bar will not be contracted at all. How
can the bar pass through the ring?
The resolution of the paradox again lies in the relativity of
simultaneity (Ferraro 2007). The length of a physical object is defined
as the distance between two simultaneous events occurring at each
end of the body, and since simultaneity is relative, so is this length.
This variability in length is just the Lorentz contraction. Similarly, a
physical angle is defined as the angle formed by three simultaneous
events, and this angle will also be a relative quantity. In the above
paradox, although the rod and the plane of the ring are parallel in the
rest frame of the ring, they are not parallel in the rest frame of the
rod. The uncontracted rod passes through the Lorentz-contracted ring
because the plane of the ring is rotated relative to the rod by an
amount sufficient to let the rod pass through.
In mathematical terms, a Lorentz transformation
can be separated into the product of a spatial rotation and a "proper"
Lorentz transformation which involves no spatial rotation. The
mathematical resolution of the bar and ring paradox is based on the fact
that the product of two proper Lorentz transformations may produce a
Lorentz transformation which is not proper, but rather includes a
spatial rotation component.
- ۹۰/۱۰/۰۳
یارب به حسین و تشنه لب انصارش
هرکس که بد سیدعلی می خواهد
این سال جدیــــــــد از زمین بردارش